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Abstract

This paper presents the advantages of a Branch Eigenmodes Reduced Model used in a control process of a heating system.
The experimental setup is a 3D heat conductive system in which a heat source is set. First, the reduced model is used to solve the non-

linear Inverse Heat Conduction Problem: identification of the heat source strength variations from time-varying temperatures. Then, the
reduced model is used to control hot points in the system. The objective of the method is to allow sequential temperature control by
decreasing the computation time necessary for the simulation.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the several kinds of Inverse Heat Conduction
Problems (IHCP) [1–4], this paper deals with the identifica-
tion of a time varying heat source strength in a sequential
manner from the knowledge of non-intrusive temperature
measurements. To be used efficiently in industrial applica-
tions, the IHCP methods have to take into account complex
and multi-dimensional geometries, to consider non-linear
governing equations and to give a real-time estimation of
the unknowns.

For multi-dimensional heat conduction problems, a
detailed description of the studied system by classical mod-
eling (finite elements, . . .) leads to a model of large dimen-
sion with a proportional requirement of computer time and
memory. In order to lighten this drawback, boundary ele-
ments are very efficient [5]. As a matter of fact, this method
does not require the complete mesh of the domain, but only
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the boundary mesh, which is particularly appropriate to
the point heat source problem. Another solution consists
in solving IHCP through a reduced model [6–8]. The
method used in these cases to build the identified reduced
model requires only decreasing temperature measurements.
This experimental modeling, based on responses to step
inputs, does not require a detailed model of the system,
nor the knowledge of the thermal properties of the domain.
Hence, this technique is particularly well adapted to the
multi-dimensional IHCP. In [9,10], an inverse non-linear
problem is solved either to determine the intrinsic diffusiv-
ity of semitransparent media or to estimate the temperature
at the cutting tool’s tip from two measured temperatures.
Another kind of reduced model is implemented: the quad-
rupole formulation in the Laplace domain. The Leven-
berg–Marquardt algorithm is used to solve the inverse
problem of parameters or functions estimation without
any regularization procedure.

In non-linear cases, the inverse algorithms are iterative
and require repeated computations of governing equations
before getting a solution. Hence, it is necessary to adopt
efficient techniques to overcome the large amount of
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Nomenclature

B (N,p) command matrix
c volumetric heat capacity, J m�3 K�1

C (N,N) heat capacitance matrix
h convective exchange coefficient, W m�2 K�1

I identity matrix
k thermal conductivity, W m�1 K�1

K (N,N) heat conductance matrix
n order of RM
N order of DM
nf number of future times for specification func-

tion
nt number of time steps for simulation
p dimension of input vector
q dimension of output vector
Q heat source strength, W m�3

R electric resistance, X
S (q,N) selection matrix
t time, s
T, _T ðNÞ temperature vector, its derivative with respect

to time, K, K s�1

U (p) input vectoreV ðN ; nÞ matrix of amalgam eigenmodes
vol volume of the domain, m3eX ; _eX ðnÞ RM state vector, its derivative with respect to

time
Y (q) DM output vector

Abbreviations

BERM Branch Eigenmodes Reduction Method
DHCP Direct Heat Conduction Problem

DM Detailed Model
IHCP Inverse Heat Conduction Problem
RM Reduced Model

Greek symbols

C system boundary
Dt time step, s
e emissivity of the radiative surface
eU mean relative error for U

evol mean volume error, K
f Steklov coefficient, J m�2 K�1

k eigenvalue
r Stefan–Boltzmann constant, W m�2 K�4

s time constant, s
U (N) vector of thermal excitations
X system domain

Subscripts
eq equivalent
ext exterior
vol volume

SuperscriptseY ðqÞ RM output vector
^ estimated value
T transposition sign
�1 inverse of a matrix
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computation time and memory required to solve IHCP. A
parameter estimation approach is presented in [11]. The
aim of this study is to identify the location and the strength
of multiple line heat sources placed in a homogeneous
domain in a steady case. Due to the fact that the location
of the line heat sources is unknown, the problem is non-lin-
ear. The boundary element method is used to build a direct
model of the measurements. The parameter estimation
approach allows to compute the confidence interval of
the estimated locations and strengths. In [12], a sequential
identification of a time-varying heat source strength is pro-
posed for an inverse radiation problem employing an
extended Kalman filter. The difficulty associated with the
numerical solution of the covariance equation in the Kal-
man filter is overcome by converting the three-dimensional
radiative transfer equation and heat conduction equation
to a reduced order model by means of the Karhunen–
Loève Galerkin procedure. In [13], the determination of
heat sources and heat transfer coefficient for two-dimen-
sional heat flow is carried out by a powerful method com-
bining the conjugate gradient algorithm with the finite
element technique. The results show that this technique is
well adapted to perform inverse heat flow analysis for arbi-
trarily shaped bodies and non-linear problems with tem-
perature dependent properties.

In the real time identification field of research, many
studies have been carried out over the past few years. To
obtain a solution of IHCP in real time, many difficulties
occur. A first problem is that the sensors can be located
far from the sources. Hence, due to the lagging and damp-
ing effects of the diffusion process, the thermal signal
reaches the sensors with a delay. This problem, inherent
to the geometry of the studied system, can be solved using
future temperatures as a regularization procedure [14,15],
but the identification of the unknowns in real time is not
available, due to the physical delay. In configurations
where the sensors are located near the sources, the addition
of future temperatures is not physically necessary but the
main difficulty lies in providing a stable solution with very
short computation time. In [16], numerical transformation
schemes between the time and Laplace domains to handle
data that are not defined analytically are proposed for
on-line estimation of the time-variant heat input to
machine tool structures. An accelerated inverse numerical



Fig. 1. The 3D diffusive system.
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Fig. 2. Schematic representation of the experiment.
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Laplace transformation is developed to improve the
numerical efficiency of the solver.

A non-linear model predictive control is proposed in
[17]. The temperature control in long ducts is performed
using a neural network model that avoids the spatial dis-
cretization and decreases significantly the computation
time necessary for the solution of the optimization problem
in real time.

The originality of our work lies in the fact that the non-
linear three-dimensional IHCP is solved by a branch
reduced model which requires a very low computation time
and therefore allows to compute the whole temperature
field at each time step.

The article is structured as follows: Section 2 describes
the three-dimensional experimental device and its model-
ing. In Section 3, the principles of the Branch Eigenmodes
Model Reduction and its application to the studied system
are developed. The IHCP solution is then proposed in Sec-
tion 4. Finally, Section 5 focuses on the sequential supervi-
sion of the temperature field in the domain.

2. Experimental device and modeling

2.1. Description of the 3D system

The proposed experimental device is used as a tool to
validate the IHCP algorithms on a concrete application
that contains many features of an industrial IHCP: 3D
geometry, heat radiation, non-intrusive temperature mea-
surements and transient case. The heterogeneous studied
system is a parallelepiped block (0.164 m � 0.098 m �
0.098 m) composed of steel (k = 52 W m�1 K�1, c =
3.846 � 106 J m�3 K�1). The block is drilled in its length
by two circular ducts (0.016 m in diameter) as shown
in Fig. 1. The external surfaces of the block are insulated
with ceramic sheets (0.024 m thick), except the two largest
vertical faces, painted in black in order to increase the
radiation heat transfer. A cylindrical heat source
(k = 20 W m�1 K�1, c = 4.235 � 106 J m�3 K�1, 20 mm in
diameter and 60 mm long) is placed in the block as shown
in Fig. 1.

The temperature measurements are given by an infrared
camera positioned 1 m away from the surface C1. The
FLIR ThermoVision� A40 infrared camera features an
uncooled microbolometer detector that delivers images
with a resolution of 0.08 �C at 30 �C. Each thermal image
is built from 320 � 240 individual picture elements that
are sampled up to 60 times per second by the camera’s
on-board electronics and software, with a relative accuracy
estimated to ±2%.

Fig. 2 presents a general view of the apparatus. The heat
source is driven by a power modulator. Each channel of
this power modulator can be adjusted from 1% to 100%
of the maximum power of the thermal heating. The dissi-
pated power in the source depends on the supply voltage
and the mean resistance of the element (R = 88 X). The
temperature dependence of the resistance is neglected for
the power domain considered. The power modulator is
controlled from a PC, as well as the power modulation tim-
ing. The source strength is then computed from the voltage
and the heating element resistance R.

The heat extraction is realized with a high-rate oil flow
in a closed circuit with a heat exchanger in such a way that
the oil input temperature in the block is constant. In the
ducts, the heat transfer coefficient between the solid and
the oil is supposed to be constant because the flow rate is
laminar and steady. The input and output oil temperatures
are given by T-type thermocouples connected to the data
acquisition system.

2.2. Modeling of the system

For the studied domains, the transient energy equations
are

8M 2 X1 c1

oT
ot
¼ r � ðk1rT Þ ð1Þ



Fig. 3. Strength variation Q(t) of the heat source.

Fig. 4. Comparison of DM and camera temperature evolutions, Dt = 10 s.
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8M 2 X2 c2

oT
ot
¼ r � ðk2rT Þ þ QðtÞ ð2Þ

where T(x,y,z, t) is the temperature and Q represents the
time dependent heat source strength.

Associated boundary conditions on the large faces are
written:

8M 2 Ci ði ¼ 1; 2Þ n � ðk1rT Þ ¼ hextðT ext � T Þ
þ erðT 4

ext � T 4Þ ð3Þ

where Text is the ambient temperature, hext = 8 W m�2 K�1

is a convective exchange coefficient, e = 0.95 is the emissiv-
ity of the black painted surfaces C1 and C2 and r is the Ste-
fan–Boltzmann constant, n being the normal unit vector.
The non-linear behavior of the system is due to the radia-
tive exchange boundary condition.

On the partially insulated faces, boundary conditions
satisfy the following equation:

8M 2 Ci ði ¼ 3; 4; 5; 6Þ n � ðk1rT Þ ¼ heqðT ext � T Þ ð4Þ
heq = 2.5 W m�2 K�1 being the convective exchange coeffi-
cient between the partially insulated faces of the block and
the ambient environment.

Concerning the oil ducts, the boundary conditions are
written:

8M 2 C7 n � ðk1rT Þ ¼ hoilðT oil � T Þ ð5Þ
in which hoil = 40 W m�2 K�1 is the convective exchange
coefficient for the established laminar oil flow in the two
ducts relative to the oil mean temperature Toil.

The initial condition is given by T(t = 0) = 301 K.
After spatial discretization using the finite element

method with linear shape functions, Eqs. (1) and (2) and
the associated boundary conditions can be written under
matrix form:

C _T ðtÞ ¼ KðT ÞT ðtÞ þ UðtÞ þ BUðtÞ
Y ðtÞ ¼ ST ðtÞ

(
ð6Þ

where C and K (dim. N,N) are respectively the heat capac-
itance and heat conductance matrices, U (dim. N) the vec-
tor of thermal excitations, B (dim. N,p) the command
matrix relative to the input vector U(t), T(t) (dim. N) the
vector containing temperatures of all discretization nodes
and _T ðtÞ the derivative of vector T with respect to time.
The matrix S (dim. q,N) is the observation matrix which al-
lows us to select a part of the whole temperature field. The
selection is contained in output vector Y(t) (dim. q). Note
that, in our case, p = q = 1, the input included in vector
U is the heat source strength Q and only one temperature
measurement point is used.

Concerning the time discretization, an implicit first-
order scheme with adaptative time steps is implemented.
The conjugate gradient method is used to solve the high
dimensional non-linear system (temperature dependence
of matrix K). The initial time step is equal to 0.1 s and
the time step for the storage of the temperatures is equal
to Dt = 10 s.
Due to the 3D geometry and to the oil ducts and heat
source cylindrical surfaces, a precise space discretization
of the diffusive block is needed. After a mesh sensitivity
study, the optimal mesh is found to be N = 23,139 nodes
and 117,710 tetrahedra. The node corresponding to the
point Y1 of the middle of the radiative surface C1 where
the camera measures the temperature is the mesh node
number 18,017. For the experiment and DM, the strength
variation Q(t) of the heat source is depicted in Fig. 3. In
order to show the good agreement between DM and the
experiment, the evolutions of the temperature of the point
Y1 are compared in Fig. 4. The temperature deviation does
not exceed 1.2 K.
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Due to the size of the matrices (dim. N,N), DM is very
difficult to use to solve the inverse problem. The objective
of the next part is to build a reduced model, computation-
ally efficient.

3. Reduced model

3.1. Branch Eigenmodes Model Reduction

The technique used in this article in order to solve IHCP
is the Branch Eigenmodes Reduction Method (BERM)
[18–20].

The branch eigenmodes problem applied to a thermal
system is defined by the following equations, where c and
k are constant thermophysical properties

8M 2 X r � ðkrV iðMÞÞ ¼ kicV iðMÞ ð7Þ
8M 2 C � krV iðMÞ � n ¼ kifV iðMÞ ð8Þ

Compared to the classical eigenmodes problem, the
eigenvalue ki (= �1/si, where si is the time constant associ-
ated to the eigenmode Vi) appears in the boundary condi-
tion. Eq. (8) is called the Steklov boundary condition. In
order to maintain the whole richness of the problem, an
appropriate choice of the Steklov coefficient f is given byZ

C
fdM ¼

Z
X

cdM ð9Þ

In our case, Eq. (9) leads to a Steklov coefficient equal to
180,000 J m�2 K�1.

The computation of the eigenmodes using the Arnoldi
technique [21] is then performed. Here, NE = 4000 eigen-
modes are computed. Each eigenmode Vi(M) is a spatial
field. As it is not handy to represent them in a 3D view,
they are not shown in this paper. Concerning the eigen-
values, the first eigenmode is associated to an infinite time
constant, and the time constant of the 4000th eigenmode is
equal to 1.3 s.

Hence, knowing the eigenmodes Vi(M), the temperature
field can be written as follows:

T ðM ; tÞ ¼
XNE

i¼1

X iðtÞV iðMÞ ð10Þ

where NE (6N) is the number of calculated eigenmodes and
Xi(t) the state vector related to the eigenmode Vi(M).

The objective of BERM is to compute the temperature
field, with the same equation as Eq. (10), but with less
eigenmodes, in order to decrease the computation time:

eT ðM ; tÞ ¼
Xn

i¼1

eX iðtÞeV iðMÞ ffi
XNE

i¼1

X iðtÞV iðMÞ ð11Þ

with n� NE and eV i being the ith amalgam eigenmode of
the reduced model, computed with the simplified amalgam
method [20]. The objective is to bring together the eigen-
modes into n subspaces (n� N), where n is the order of
RM. First, the n major eigenmodes are chosen. Then, the
distribution of the minor eigenmodes into the n subspaces
is performed, according to a measure of the reduction error
[19].

Finally, the n amalgam eigenmodes are brought together
into matrix eV (dim. N,n) and RM can be expressed under
matrix form:

eV TC eV _eX ðtÞ ¼ eV TKðeT Þ eV eX ðtÞ þ eV TUðtÞ þ eV TBUðtÞeY ðtÞ ¼ S eV eX ðtÞ
(

ð12Þ

with eT ¼ eV eX . These equations can be written under a
more convenient form:

L
_eX ðtÞ ¼MðeT ÞeX ðtÞ þ eV TUðtÞ þ GUðtÞ ðaÞeY ðtÞ ¼ H eX ðtÞ ðbÞ

(
ð13Þ

where

L ¼ eV TC eV
MðeT Þ ¼ eV TKðeT Þ eV
G ¼ eV TB

H ¼ S eV

8>>>><>>>>: ð14Þ

Eq. (13a) is a system of reduced order n. Matrices L and M
have low dimensions (n,n). As for DM, an implicit first-or-
der scheme with adaptative time steps is implemented. The
LDLT factorization method, well adapted to the reduced-
order matrices, is used to solve the system.

3.2. Results and discussion

Different reduced models are tested (n = 5,10,20,40,
60,80 and 100). The heat strength Q(t) is represented in
Fig. 3. The direct simulations are carried out using a stor-
age time step equal to 10 s (nt = 721). Table 1 summarizes
the smallest time constant smin of each reduced model and
the CPU time necessary for the complete direct simulation.
Note that the abbreviation RM5 refers to n = 5.

Concerning the smallest time constant of each RM,
when n increases, smin decreases, allowing to reproduce fast
dynamics.

Regarding the computation time, the simulations have
been performed on the same computer. It clearly appears
that RM computation times are very small (divided by a
factor 13 to 694 (for RM5) compared to DM in the present
study).

Note that the use of RM provides a large reduction ratio,
what induces an important gain in computer memory.

In order to compare the DM and RM responses, a mean
volume error is defined as follows:

evol ¼
1

nt � vol

Xnt

i¼1

Z
X

abs T iðMÞ � eT iðMÞ
� �

dv ð15Þ

where T and eT are respectively the DM and RM tempera-
ture fields, nt the number of time steps and vol the volume
of the domain.



Fig. 5. Evolution of the mean volume error evol versus RM order n.

Table 1
Smallest time constant and CPU time for each model

Model DM RM5 RM10 RM20 RM40 RM60 RM80 RM100

smin (s) – 62.5 25.5 9.0 6.2 3.1 3.1 3.1
CPU time (s) 3471 5 9 22 61 116 189 271

4748 E. Videcoq et al. / International Journal of Heat and Mass Transfer 51 (2008) 4743–4752
The evolution of evol is represented in Fig. 5 for different
orders n of RM. It can be underlined that the increase of n

leads to an important improvement of the accuracy of RM.
The comparison of the temperature evolutions between

DM and RM5 and between DM and RM100 for the point
Y1 are shown respectively in Fig. 6a and b. As expected,
Fig. 6. Comparison of DM and RM temperature evolutions at the point Y1

RM100.
RM100 gives the best results. The temperature deviation
does not exceed 0.5 K, in this case.

4. Inverse problem

4.1. Inverse algorithm

RM is now used in order to solve IHCP. The procedure
is sequential. Knowing the input vector U(k) at the time
step k, the aim is to identify the vector U(k + 1) from tem-
peratures at the time step (k + 1).

Using an implicit time discretization, Eq. (13a) leads to

eX ðk þ 1Þ ¼ I � DtL�1MðeT Þh i�1 eX ðkÞ þ DtL�1 eV TUðk þ 1Þ
h

þ DtL�1GUðk þ 1Þ
i

ð16Þ

Hence, it ensues a relation between RM output vector and
the input vector U(k + 1):eY ðk þ 1Þ ¼ HGUðk þ 1Þ þH ½M eX ðkÞ þLUðk þ 1Þ�

ð17Þ
with the following matrices:

M ¼ I � DtL�1MðeT Þh i�1

L ¼M DtL�1 eV T

G ¼M DtL�1G

8>><>>: ð18Þ
. (a) Deviation between DM and RM5. (b) Deviation between DM and
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In order to take into account the lagging and damping ef-
fects of the diffusion process, it is necessary to obtain infor-
mation using future time steps [6,14]. A function
specification is introduced. A temporary assumption is
made on the additional unknowns: U(k + 1 + 1), . . .,
U(k + 1 + nf), where nf is the number of future time steps.
In this study, a constant value of U is chosen:

Uðk þ 1þ iÞ ¼ Uðk þ 1Þ ¼ constant for 1 6 i 6 nf ð19Þ

The addition of future time steps leads to the resolution of
a system of (nf + 1) � q equations where q is the number of
measurements. In this study, q = 1, because only one pixel
of the camera view is used.

Hence, at each time step, the temperature measurements
vector Y* contains (nf + 1) rows, as follows:

Y� ¼

Y �ðk þ 1Þ
Y �ðk þ 2Þ

..

.

Y �ðk þ nf þ 1Þ

266664
377775 ð20Þ

The system to solve is then overdetermined. The aim is to
identify the pseudo-solution bU ðk þ 1Þ of IHCP, such as
Y� � eY ffi 0, where eY is the temperature vector computed
by RM. This condition can be written, according to Eq.
(17):
Fig. 7. Identification of Q(t) with nf = 5, Dt = 10 s. (a) Identifi

Table 2
Comparison of inversion results for different RMs, with nf = 5

Model RM5 RM10 RM20

eU (%) 8.09 8.15 8.36
CPU time per step (s) 0.01 0.02 0.05
Y� � ðC bU ðk þ 1Þ þDÞ ffi 0 ð21Þ

with the following matrices:

C ¼

HG

H ½GþMG�
..
.

H I þ
Pnf

j¼1

M j

" #
G 8 nf P 1

266666664

377777775 ð22Þ

D ¼

H M eX ðkÞ þLUðk þ 1Þ
h i

H M 2 eX ðkÞ þMLUðk þ 1Þ þLUðk þ 2Þ
h i

..

.

H M nfþ1 eX ðkÞ þ Pnf

j¼0

M jLUðk þ nf þ 1� jÞ
" #( )

26666666664

37777777775
ð23Þ

According to Eq. (21), the inversion procedure, using the
least square method, leads to the sequential solution:bU ðk þ 1Þ ¼ ðCTCÞ�1

CTðY� �DÞ ð24Þ

Using RM, the IHCP can be solved while it is impossible to
do by DM due to the size of the matrices to invert. Note that
the inverse of a squared matrix (23139 � 23139) requires
cation through RM5. (b) Identification through RM100.

RM40 RM60 RM80 RM100

9.40 7.79 8.24 7.86
0.15 0.28 0.44 0.65
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4.2 Gb of storage and personal computers have limited
amount of random access memory (2 Gb in our case).

4.2. Results and discussion

The heat source is submitted to the strength variation
represented in Fig. 3. The temperature is measured at point
Y1 using the infrared camera with Dt = 10 s. These noisy
temperatures measured by the camera are used in the
inverse procedure, without any filtering procedure. The
objective is to be able to identify the value of Q included
in vector U(k + 1) at each time step (k + 1), i.e. during a
maximum duration of 10 s. It should be noted that point
Y1 is located far from the heat source. Hence, during the
first 60 s of the history, the temperature is always equal
to the initial one: 301 K. Due to the lagging effect of the dif-
fusion process, it is necessary to use future time steps. As
the time step is equal to 10 s, the number of future temper-
atures is, at least, nf = 5.

Many inversion tests have been carried out using differ-
ent reduced models. The inversion results, as well as the
real strength are presented in Fig. 7a and b for nf = 5.
The results are quite satisfactory except for some oscilla-
tions, probably due to the oscillations in the temperature
measurements of the camera, as shown in Fig. 4. It clearly
appears in Fig. 7a that RM5 reduces the oscillations in the
identified values of Q(t), what means that RM5 acts as a
regularization procedure in IHCP.

Table 2 shows the computation time per time step and
the mean relative error eU, defined as follows:

eU ð%Þ ¼
1

ðnt � nf � 1Þ

�
Xnt�nf�1

k¼1

abs
Uk � bU k

U k

 !
� 100

" #
ð25Þ

in which U is the measured strength and bU the identified
one. Of course, in real applications, eU can not be computed.
This criterion is given here as supplementary information.

It can be underlined that the increase of RM order does
not improve significantly the inversion results, contrary to
the direct problem.

Moreover, due to the low dimension of RM, CPU time
is very small, and the inversion of the matrix I � DtL�1

�
MðeT Þ� of Eq. (18) is numerically practicable.

5. Sequential temperature control

The heat source strength being identified, the objective is
to compute the whole temperature field eT bU ðtÞ with a com-

putationally efficient procedure. Hence, RM is used a sec-
ond time to solve DHCP at each time step in order to
supervise the hot zones of the domain (hot points, dilation).
The general procedure is represented in Fig. 8. At each time
step k, the computer saves the temperatures Y* measured by
the infrared camera. From the time (nf + 1) � Dt, the iden-
tification procedure begins. For example, for nf = 2, the
temperatures Y*(Dt), Y*(2 � Dt), Y*(3 � Dt) are used to
identify bU ðDtÞ by RM. Knowing bU ðDtÞ, RM is then used
in a direct procedure to compute eT bU ðDtÞ. The duration of
this procedure (IHCP and DHCP) must not exceed the time
step of the temperature acquisition because the procedure
must run at each time step. The different reduced models
are tested.

For illustration, the isothermal lines at the cross-section
x = 0.082 m and for the time t = 7000 s are represented in
Fig. 9. Fig. 9a shows the temperatures computed by RM5.
The procedure (identification and rebuilding of the whole
temperature field) needs 0.01 s per time step, as shown in
Table 2. Fig. 9b depicts the temperatures computed by
RM100. This reduced model requires more CPU time:
0.65 s per time step. Nevertheless, this duration is lower
than the acquisition time step (Dt = 10 s). It is easy to
remark that, even if RM5 and RM100 give approximately
the same results for bU ðtÞ, the rebuilt temperature fields are
different. Not enough spatial information is included in
RM5 to rebuild an accurate temperature field. It yields a
mean temperature for the cross-section.

In order to compare the results, Fig. 9c shows the tem-
perature field computed by DM and the exact heat source
strength. This figure confirms that the temperature levels
given by RM100 are reasonably accurate. The hottest zone
is located in the middle of the upper surface.

For comparison, Fig. 9d shows the temperature field
computed with RM5 and the exact input U(t). The mean
volume error between DM and RM5 is equal to 5.26 K,
as shown in Fig. 5. It can be underlined that the tempera-
ture levels are approximately the same than those repre-
sented in Fig. 9a. These figures confirm that, even if
IHCP solutions can be obtained using a very low order
RM, this RM is not sufficiently accurate to allow the
sequential temperature control and the supervision of the
hot points in the domain.



Fig. 9. Isothermal lines at the cross-section x = 0.082 m and t = 7000 s. (a) Temperature field computed with RM5 and bU ðtÞ of Fig. 7a. (b) Temperature
field computed with RM100 and bU ðtÞ of Fig. 7b. (c) Temperature field computed with DM and the real input U(t). (d) Temperature field computed with
RM5 and the real input U(t).
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6. Conclusion

This study deals with the identification of a heat source
strength from non-intrusive temperature measurements.
The heat source is located in a steel block and the measure-
ments are performed on a radiative surface of the block.
Due to the high dimensional matrices, the detailed model
of the system can not be used in order to solve IHCP.
The use of a Branch reduced model for the solution of
IHCP is then introduced. The method is sequential and
includes the regularization with the function specification
technique. The influence of the reduction order is analyzed
for both DHCP and IHCP. The technique gives accurate
results and is particularly robust in multi-dimensional
IHCPs. Moreover, the method is computationally efficient
(only 0.65 s at each time step for RM100). It becomes then
possible to compute the complete temperature field, know-
ing the estimated input vector, at each time step, in order to
supervise hot zones in the domain and to evaluate the non-
linear matrices (K in our case).

Further developments of this approach focus on the cou-
pling of two reduced models: the first one for the solid part
and the second one for the fluid (for instance, the oil flow).
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